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Abstract: We derive a prime geodesic theorem for compact, odd-dimensional, real hyperbolic spaces. The obtained
result corresponds to the best known result obtained in the compact, even-dimensional case, as well as to the best
known result obtained in the case of non-compact, real hyperbolic manifolds with cusps. The result derived in this
paper follows from the fact that the prime geodesic theorem gives a growth asymptotic for the number of closed
geodesics counted by their lengths, and the fact that free homotopy classes of closed paths on compact locally
symmetric Riemannian manifold with negative sectional curvature are in natural one-to-one correspondence with
the set of conjugacy classes of the corresponding discrete, co-compact, torsion-free group. The current article is

dedicated to quotients of the real hyperbolic space.
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1 Introduction

In [3], the authors improved the error term in DeGe-
orge’s prime geodesic theorem [7], for compact, lo-
cally symmetric spaces of real rank one.

In this paper we pay our particular attention to
compact, odd-dimensional, real hyperbolic spaces.

While the main result in [3] is achieved by ap-
plication of the method analogous to the method de-
veloped by Randol [29], the main result of this paper
will follow from our recent research on the logarith-
mic derivative of the corresponding zeta functions of
Selberg and Ruelle [17], and the techniques applied
by Park [25], Fried [10], and Hejhal [18], [19].

For the corresponding result in the compact, even-
dimensional case, we refer to [16].

Note that Gangolli [14] and DeGeorge [7] proved
the same result independently. Moreover, an anal-
ogous result was proved by Gangolli-Warner [15],
when locally symmetric space has a finite volume.

In [18] and [19], Hejhal extensively studied the
Selberg zeta function over a hyperbolic Riemann sur-
face. There, he derived a prime geodesic theorem with
error terms (see also, [20], [21] and [29]).

There have been many works, for instance the
work of Iwaniec [23] and Luo-Sarnak [24], to obtain
the optimal size of the error term for a specific arith-
metic discrete subgroup I' C PSL (2, R).

We also refer to the work of Parry-Pollicott [26],
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where they used the Ruelle zeta function for an axiom
A flow to derive a prime geodesic theorem.

In [25], Park proved Theorem 1.1 for the Ruelle
zeta function twisted by a special unitary representa-
tion y of I'. According to Park, this can be used for
prime geodesic theorem in a fixed homology class,
which would be a refinement of [1], [9], [28] for real
hyperbolic manifolds with cusps.

The structure of the paper is as follows. Sec-
tion 2 is devoted to harmonic analysis on compact
symmetric spaces. We introduce symmetric and lo-
cally symmetric spaces of rank 1, give the corre-
sponding restriction map, introduce the real hyper-
bolic space, and define Casimir and Dirac operators.
We adopt some necessary notation related to the ad-
missible lifts and the trace formula (the hyperbolic
contribution). Finally, we introduce the zeta functions
and the geodesic flow, and give the corresponding sin-
gularity pattern. In Section 3 we consider the Sel-
berg zeta functions and the corresponding differential
forms on d-dimensional real hyperbolic manifolds.
We provide an adopted singularity pattern expressed
in terms of the corresponding form Laplacians. Sec-
tion 4 is devoted to preliminary results. There, we
assemble those theorems we will need. In Section 5
we introduce various counting functions and give the
Weyl asymptotic law in the form sufficient to derive
desired results. In Section 6 we state and prove the
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main result of the paper. Finally, Section 7 is devoted
to concluding remarks.

2 Harmonic analysis on compact
symmetric spaces

We introduce the notation following [5].

Let Y be a compact locally symmetric Rieman-
nian manifold with negative sectional curvature.

Denote by X the universal covering of Y.

Since X is a Riemannian symmetric space of rank
one, it is either a real, or a complex, or a quaternionic
hyperbolic space, or the hyperbolic Cayley plane.

As it is well known, we may write Y = I \
G/ K, and X = G / K, where G is a connected
semi-simple Lie group of real rank one, K is a max-
imal compact subgroup of GG, and I is a discrete, co-
compact torsion-free subgroup of G.

We require G to be linear in order to have the pos-
sibility of complexification.

Let g = £ @ p be the Cartan decomposition of the
Lie algebra g of (G, a a maximal abelian subspace of
p, and M the centralizer of a in K with Lie algebra m.

We normalize the Ad (G)-invariant inner product
(.,.) on g to restrict to the metric on p.

Let @ (g, a) be the root system determined by the
adjoint action of a on g.

Let W = W (g, a) be its Weyl group.

Fix a system of positive roots @™ (g, a) C
®(g,a), and let n = > n, be the sum of

acdt(g,a)
the root spaces corresponding to the elements of
ot (g,a).

The Iwasawa decomposition g = £ & a & n corre-
sponds to the Iwasawa decomposition G = K AN of
the group G.

2.

Define p = %
acdt(g,a)

tive Weyl chamber a™ (as the half line in a on which
the positive roots take positive values).

Let AT =exp (at) C A.

Let i* : R(K) — R (M) be the restriction map
induced by the embedding i : M — K, where R (K)
and R (M) are the representation rings ever Z of K
and M, respectively.

Suppose that dim (V) =d > 3.

It follows that X is the real hyperbolic space
HR?, where K = Spin (d), M = Spin(d — 1) or
K=S50(d),M =S80 (d-1).

Moreover, the fact that d is odd, yields that we
have to distinguish between two cases:

Case (a): 0 € M is invariant under the action of
the Weyl group W.

dim (ny) o, and the posi-
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Case (b): 0 € M is not invariant under the action
of the Weyl group.

Here, o € M is a representation of M.

First, we consider the case (a).

By Proposition 1.1 and Proposition 1.2 in [5,
pp. 20-23], there exists an element v € R (K) such
that ¢* () = o.

Note that y is uniquely determined by this condi-
tion.

To v, we join Zs-graded homogeneous vector
bundle V () =V (v)" @ V ()~ as follows.

We represent y as

Y= @ A%,

where a; € Z, y; € K , and put

|al
VE =

gl @ @ Voo

sign(a;)=+1m=1

where V,,, is the representation space of ;.
Then, we define

V()" =G xg Vi

If (x, V) is a finite dimensional unitary represen-
tation of I, then we define

Vyx (v) =T\ (V’Y @V (7).

We choose a Cartan subalgebra t of m, and a sys-
tem of positive roots T (mc, t).
Let
2 2 2
c(@) = lpl" + lpm|” = 1o + pul”,

where the norms are induced by the complex bilinear
extension to gc of the inner product (.,.), uy is the
highest weight of o, and py, = % o
a€d+ (mg,t)
The inner product (., .) also fixes the Casimir el-
ement {2 of the complex universal enveloping algebra

U (g)-
We define the operators

A(7,0): C® (X, V (7)) = CF (X, V (7)),
Ay, (7,0)%: O (Y, Vyy (7)) = C® (Y, Viry (7))

by

Ao = -9 —c(0),
Ay (7, 0)2 =—-Q—c(o).

Second, we consider the case (b).
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By Proposmon 1.1in [5, p. 20], there is a unlque
element 7 € Spin (d), and a splitting s @ v =~
@ ~~, where s is the spin representation of Spin (d)
and fyi are representations of K, such that for the non-
trivial element w € W

o —wo = sign (1) (S+ - S_> a (’Y/) ’

oc+wo =i (vt —47),
where vy, is the last coordinate of the highest weight
of o, and s are the half-spin representations of
Spin (d —1).

We put v = 4+
7~ € R(K).

Now, we define the bundles V (), Vi, (7).
V (7®), Vy,x (), and the operators A (v, o),
Ay, (7,0), A(7%,0), Ay, (7%, 0) in the same way
as in the case (a).

Note that V' (v%), Vy,, (7°) are Clifford bundles.
Hence, they carry Dirac operators D (), Dy, (o).

In order to make these Dirac operators unique, we
proceed in exactly the same way as in [5, pp. 39-30].

We obtain, D (c)? = A (75 0)% and since the
Dirac operators are self-adjoint, we have A (75,0) =
D (o)  and Ay, (+%,) = Dy, (0).

Let E'4 (.) be the family of spectral projections of
a normal operator A. We define for s € C

my (5,7,0) = o (s},
s (s,0) = Tr(EDy ) ({sh) -

Epy o) ({=51) ).

—v" €R(K)and y® =~T +

TI'EAY

Since d is odd, these multiplicities do not depend
on the choice of the representation v = € a;y;, a; €
Z,; € K given above.

The root system ®* (g, a) is of the form &+ (g, a)
= {a} or " (g,a) = {%,a}, where « is the long
root.

We set T = |, where « is the long root.

Since I' is co-compact and torsion-free, there are
only two types of conjugacy classes, the class of the
identity e € I" and classes of hyperbolic elements.

For g € ' let np (g) = # (I'y/(g)), where Iy is
the centralizer of g in I', and (g) is the group generated
by g.

By CT' we denote the set of conjugacy classes of
T.

Let g € G be hyperbolic.

It is known (see, e.g., [13], [14], [15]) that g is
conjugated to some element agm, € AT M.

Thus, g = Ggagmgﬁgl for some 0,,.

We define [ (g) = { (09agm999_1) = |log (ay)|.
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Note that for g € T, the number [ (g) is actually
the length of the closed geodesic on Y defined by g.

Suppose that (o, V;;) and (), ;) are some finite-
dimensional unitary representations of M and I', re-
spectively.

For s € C, Re (s) > 2p, the Ruelle zeta function
ZRy (s,0) is given by

ZRyx(S,U)
- 11 det(l—(a(mg)

1#[gleCT

®x(9) ).

For s € C, Re(s) > p, the Selberg zeta function
Zs (s,0) is given by

+o0
II I
1#£[g]eCT k=0
primitive

x det (1—

Zsy (s,0) =

(0 (mg) ® x (9) ®
Sk (Ad (mgag)ﬁ) )ef(sﬂj)l(g)),

where S* denotes the k-th symmetric power of an en-
domorphism, n = fn, 6 is the Cartan involution of g,
and [g] € CT is called primitive if [ (g) is the smallest
time such that ¢ (I (¢) ,y) = y, where

0 : R x (D\G/M) — D\G/M,

@ (t,TgM) = Tge~ " M (H is the unit vector in a™)
is the geodesic flow determined by the metric of Y.
If [g] € CT is primitive, then nr (g) = 1.
In the case (b) we also define

SX (Sa U) = ZS,X (57 G) ZS,X (57 wa)

and the super zeta function

(s,0) = Zox20)
X Zs (s,wo)
where w € W is the non-trivial element.

Let nc be the complexification of n.

For p > 0, we consider APn¢ as a representation
of M A.

For A € C, let Cy, denote one-dimensional repre-
sentation of A given by a — a’.

= {(T,)\) cTeM e R}
such that APn¢ decomposes with respect to M A as

Nne = > V;®C,, where V; is the space of the
(Tv)‘)elp
representation 7.

There are sets I,
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The Ruelle zeta function has the representation
(see, e.g., [10], [11], [12])

ZRry (s,0)

d—1 (=1)”
:H H ZS’X(S‘Fp*)‘vT@O-)

p=0 \(T,\)€I,

By [5, p. 113, Th. 3.15], the zeta functions
Zsx (s,0), Sx(s,0) and S§ (s,0) have meromor-
phic continuations to all of C.

In particular, the singularities of Zg (s, o) (case
(a)) and of Sy (s,0) (case (b)) are at +is of order
my (s,7,0) if s # 0 is an eigenvalue of Ay, (v,0),
at s = 0 of order 2m,, (0,v, 0) if 0 is an eigenvalue of
AY,X (/)/7 U)'

In the case (b) the singularities of S} (s, o) are at
i s and have order mj (s, 0) if s € R is an eigenvalue
of Dy, (o).

Furthermore, in the case (b), the zeta
function Zg, (s,o0) has singularities at is, +s €
spec (Ay, (v°,0)) of order

5 (ma (sl 7,0) + 3 (5, 0)

if s # 0and m, (0,7v,0) if s =0.

3 Real hyperbolic spaces

As noted in the previous section, in this paper we pay
attention to the real hyperbolic space X = HR?, d >
3, d odd.

Thus, K = Spin (d), M = Spin (d — 1) or K =
SO (d), M =S50 (d—1).

In particular, p = %.

We shall assume that the metric on Y is normal-
ized to be of sectional curvature —1.

Consequently, 77 = 1.

For the sake of simplicity, we fix some o € M
and x € I.

Hence, we avoid to write o and  in the sequel
(unless necessary).

It follows that

ZR (s)
(=1*
d—1 d—1
= H H Zs | s+ — AT
p=0 \(T,\)€I,

Moreover, the Poincare duality

Ijoip={(r,d=1-=X) : (1,\) € I,},
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where p € {0,1, ..., &5 — 1}, yields that

Zg (s)
d-1_1
3 d—1
11 (11 Zg<s—|—2—)\,7>><
p=0 (r,N)elp

d—1 (=1)”
XZS<8—2+)\,T)) X
(—]_)T

d—1
X H Z5<s+2—)\,7>

(T,)\)Gld;l
2

Finally, reasoning as in [6, pp. 40-45], we obtain
that

ZR(s)
d;l 1

)
—D,0p | X

:};[0 (s <s+d;

d—1 (=1)?
XZS(3—2+p,ap)> X

d—1

(75 (soa)) T

Thus, in this setting, we consider the Selberg
zeta function Zg (s,0,), p € {0,1,...,%} for d-
dimensional real hyperbolic manifold Y, where o), is
the p-th exterior power of the standard representation
of SO (d —1).

Note that o, is irreducible unless p = 41

5 -

Ifp= %, then there exists a splitting o a1 =
oT @ o~ into two irreducible components o and o~
((1,1,...,1,41) is the highest weight of o).

The singularities of Zg (s, 0,) are expressed in
terms of the form Laplacian A, on Y.

Thus, the Selberg zeta function Zg (s,0p), p €

{0,1, ..., %51}, has a zero at

d—1-2p d12p)

_i\EiR B
0#£s=iX€i U( 5 , 5
of order

dim {pr =

2
<)\2 + <d - 12_ 2p> ) w, 0w = 0}»

a zero at s = 0 of order

2dim{pr = <d_12_2p)2w,5w = 0},
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if p # %, a singularity at s = 517172*2” of order

P —k - - d—1-2
>~ (=1)""" by, asingularity at s = —“—=—= of order
k=0
¢ —k
S (=1)P by
k=0

Ifp= %, the latter two singularities coincide,

and the orders add up.
Here 6 denotes the co-differential, and b, is the
k-th Betti number of Y.

4 Preliminary results

The following results will be applied in the sequel.

Theorem A. [22, p. 18, Th. A.] Let A1, Ao,... be a
real sequence which increases (in the wide sense) and

has the limit infinity, and let

where the c,, may be real or complex, and the notation
indicates a summation over the (finite) set of positive
integers n for which A, < x. Then, if X > A\ and
¢ (x) has a continuous derivative, we have

> end (M)

An <X

X
:_/cmd@m%Hﬂm¢W%
A1

If further, C (X) ¢ (X) — 0 as X — oo, then

o

Z CnQb ()‘n)

1
- [c@)d @i,
1

provided that either side is convergent.

Theorem B. [22, p. 31, Th. B.] If k is a positive
integer, ¢ > 0, y > 0, then

c+ioo

1 / yids
2ri k )
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Theorem C. [3, p. 307, Corollary 3.] If f(s) =
ZRy (s,0), then

_Zi(s)

16) =7

where Z (s), Z1 (s) are entire functions of order at
most d over C.

Theorem D. [10, p. 509, Prop. 7] Suppose Z (s) is
the ratio of two nonzero entire functions of order at
most d. Then, there is a D > 0 such that for arbitrarily
large choices of r

/

r

Z' (s)
Z(s)

|ds| < Drlogr.

Theorem E. [17] Lete >0andd — 1 > n > 0. Sup-
pose that t > 0 is chosen so that it is not a zero of
Zs (s,0p), p € {O, 1,..., %} Then,

)
Zg (s)
ZR (s)
Clde 1
=0 (td o ) * Z §—=pPSs0

|t—vs.0]<1

1, 14 d—1 1 _ 1,  d-1
for s —dol +it, 5= <o < 4t zd, :vhere
pso =St +iysgisazeroof Zs (s — 5, 00)
on the line Re (s) = L.

(i)

-0 )

fors:al+it,%+n§01<%t—%.

S Counting functions

Let I'y resp. PT'}, denote the set of the I'-conjugacy
classes of hyperbolic resp. primitive hyperbolic ele-
ments in I'.

It is well known that a prime geodesic over Y cor-
responds to the conjugacy class of a primitive hyper-
bolic element v € I'.

We denote such prime geodesic by C,,.

Let 7p () be the number of prime geodesics C,
over Y, whose length [ (vy) is not larger than log z.
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We may write
mr (z) = #{Cy : N(y) <z},

where N () = €7,

It is also known that each v € T’y can be repre-

()

sented in the form v = """, where 79 € PT}, is

some element.
We introduce the following functions:

A(y) =4 (3") = log N (70)

for v € Iy,
Yo (z) =

2

YETH,N(v)<z

A(v),

Vi (r) = /%/le (t) dt,
0

jeN.

Let N (y) be the number of zeros ps g =
ivs,0 of Zg (s —
<z <y

By [8, p. 89, Th. 9.1.],

Nsp (y) = Cry* + 0O (yd*l (log y)fl)

d—1
2 T
%, ao) on the interval % +iz, 0

for some explicitly known constant C'.
Note that in [17], the estimate

Nsp (y) = Cry® + O <yd71>

was sufficient to derive the desired results (see also,
[4] for the even-dimensional case).
In this paper, we shall apply the estimate

Nso(y) =0 (y").

6 Prime geodesic theorem

Theorem 1. (Prime Geodesic Theorem) Let X be the
real hyperbolic space HR?, d > 3, d odd. Then,

71 ()

|

=Y (-1 3 i (ms@)
p=0 s(p)e(3(d—1),d—1]

@) (x%(dfl) (log w)_l)

as x — 0o, where s (p) is a singularity of the Selberg
zeta function Zg (s - % +p, O'p).
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Proof. Suppose that k£ > 2d is an integer.
Furthermore, suppose that x > 1and ¢ > d — 1.
By [5, p. 97, (3.4)],

e_Sl(’Y)

log Zg (s) = — )

>

v€E€l,

forRe(s) >d — 1.

Therefore,
Zr(s) _ N~ e O0)
Zr(s) nr(v)
_ 1(v)
e ()N ()

for Re (s) >d — 1.

Since 7y € 'y, it follows that y = 7, r()
Yo € PTy.

As noted earlier, we may write g =
000y, 07, for some 0., where a,,m., € ATM.

for some

Now,

_nr(y) _ —1\nr(y)
Y =% = (070 Aryg My e'yo )

_ -1
T0ry0 Ay My g Mg -+ By Ty g
_ nr (), nr(y) g—1
_970 Qg My 070 :

Hence,

Y0 v0 Yo Yo

= oz ()]

=nr (7) [log (ay,)| = nr (v) 1 (70)
=nr (7)log N (y0) = nr (y) A (7).

L(y) =l (9 aﬂr(v)mnr(7)9—1>

Consequently,
Zp(s) _ x~ A0
Zr(s) 2 N(v)°

forRe(s) >d — 1.
Hence, by Theorem A and Theorem B, we obtain
that (see, e.g., [3, pp. 311-312])

ctioco

1 Zp(s) =«

ds.
s) k
ZR (s) .1;[0(3+j)

c—ioo

Let A > 0 be a number.
We consider the interval it, A — 1 <t < A + 1.
It is not hard to apply the Dirichlet

principle to conclude that there exists a point i A, A
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€ (A —1, A+ 1], such that (see, e.g., [16], [3], [30],
[271)

|1A — (X‘ > ﬁ’
where C' > 0 is fixed, and « is a zero of Zg (s, 0p), p
€{0,1,..., %}
Put

Define
c(T)
—{SGC 15| < T, Re ( )_21}
U{SE(C : %<Re(s)§c,

Since |i A — af > % for all a’s and all
Zs (s,0p)’s, it immediately follows that no pole of
Zp(s)
ZR(s)
C (T) (note that Zg (s,0p), p € {O, 1., %} has
no singularities for Re (s) > 451).

Without loss of generality, we may also assume
that no pole of

occurs on the boundary of the square part of

Z;2 (S) stk

ZR (s)

(s +J)

.
L

occurs on the boundary of the circular part of C (7).
Now, we apply the Cauchy residue theorem to the

ZR(S) 25tk

function along the contour C' (7).

720 {1 (s1g)
7=0
‘We obtain,
Z’ s+k
/ R (s) = ds
Zr(s) k .
C1(T) [I (s+3)
=0
=271 Res;—. / () ol
| Zr(s) K N E
z€C(T) [ (s+)
=0

where C; (T') denotes the boundary of C (T') taken
with the anticlockwise orientation, and the sum along
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C (T) is taken over singularities of gggz; kz's+k A
HO(S+J)
i=

in-

side C (7).
Suppose that 0 < 5 < ¢ — %.
Denote by C! (T') the boundary of the circular
part of C'(T'), taken with the anticlockwise orienta-

tion.
We have,

k
I1
=0
) \ Z;% (S) stk
=27i Z Ress—, (ZR )

k
-€C(1) I1 (s +3)
j=0
Moreover,
Vi ()
c+iAZ, sk
1
S / R (5) = ds+
271 Zgr(s) F ,
i A [1(s+3)
=0
c+iooZ, sk
1
: R (s) = ds+
271 Zg(s) F
ctid [T (s+J)
j=0
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In order to estimate the integral over C' (T'), we

s+k
QL‘ gR E‘? . x ds. apply Theorem C and Theorem D.
i s .
oo R 1 (s +7) We obtain,
§=0
/ +k‘
Since / Zp(s) a° ds
ZR(s) Fk .
Zp(s) A(v) CH(T) jl:[o (s +7)
= . =
Zr(s) G N(O) -
_ L k-1 R\S
for Re (s) > d — 1, we deduce =0 |z 2T / Zr () |ds|
cHioo cH(T)
1 Zp(s) ath /
2mi ZR (S) k ds :O x%‘FkT*k*l Z (S) |d3’
ct+i A H (S+]) ZR(S)
J=0 |s|=T
ctioo _ L kp—k—1+d
—0 | zct* |ds| =0 (m T log T) ’
o z ‘S‘k—i-l
cti A In order to estimate the remaining integrals, we
-0 ( c+kAfk) apply Theorem E and the fact that |i A— a’ > % for
all a’s.
Similarly Fix some ¢ > 0.
Obviously,
c—iA , &
1 / Zp(s) a5t s 1
e PO 54 9) J R R
j=0 Zp (s IE[ (54 )
d—1 A S
—0 (:UC"_kle_k) ‘ B A i J
=14 A
2 ’
Thercfore, o st [ |7l
Ui (2) 2R ()
~ %+ﬁ+1A
c+HA
1 Zp(s) stk
ol Zn(s) k ds+ By (i) of Theorem E
c—iA I1 (s +3) /
=0 Zp (s)
O (xc+kA—k> ’ Zr ()
1
. =0 (Ad 1+€)
1e., * - Z §—Pso
- | A—vs,0|<1
c+1 ,
Zp (s) asth _
Zp(s) k ds fors =0l +1iA, %§01<%A—%.
c—iA [T (s+7) In particular,
j=0
=2miyy (x) — O (:cC*’“A*’“) . 75 (s)
ZR ()

Furthermore, we estimate the ~ 1
integrals along [c +iA, d Ly g+ 1A] =0 (Ad_HE) + Z -
[T +B8+1A4,42 +1A} c (1), |A—vs,0|<1 ps0
[——114 d=1 +,8—1A] and
[dl—i—ﬁ—lA,c—lA]. fors—a—l—fl%galg%—i—ﬁ.
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Therefore, Similarly,
ZR (S) c—iA , k
Zn (5) R
ZR(s) k .
a0 - dlig i 4 [T (s+7)
-0 (Ad 1+6) +0 Ad Z 1 2 =0
‘A_'YS,O‘Sl :O <1$C+kT—k—2+d+€> .
-0 (Ad—l-i—s) + o) (AQd) /8
—0 < A2d> -0 (T2d Combining the estimates derived above, we end
up with
fors:al+iﬁ,%§01§%+6. -
Consequently, 2riyy (x) — O (:L"C+kA_k> +
A+iA L tkm—k—24dte
2 Z/ (3) xs+k O (Bl‘ T +
ZR (s) & ds i1
R\S . 2=l B+kp—k—142d
L4p+i4 HO(S+J) 0(5” g T )+
= A=l g
-0 <$%+5+kT—k—1+2d) ' o (3? 2 Hhpheivd 10gT>
Similarly, L ZJ/R (s) asth
g =2mi Z Resg—, Zn(s) &
2 / Z;% (s) 75tk J zeC(T) HO (s 4 j)
S J=
Zr(s) k
i g 7O ] 49) _
? Jj=0 Letting T — +o0 (then A — 400 as well), and
-0 (x%-ﬁ-ﬁ-ﬁ-kT—k—H?d) taking into account that k£ > 2d, we conclude that
Finally, by (ii) of Theorem E, Ui (2)
Z;?, (s) <1 qd—1 > !
=0 | AT e Zn(s) astk
ZR (s) g = > Res,—. ZZ (Si - :
_ _ k :
forsI:cT1 + ilA,%+ﬂ§01<iA—%. =Py jl;[0<3+j)
n particular,
Z}% (s) O 1 Jd-14e W/here PE denotes the set of singularities (poles) of
Zn(s) \B A
RrR(s) k ’
- [T (s+7)
fors:al—l—iA,%%—,Bgolgc. J’=OSJ
We obtain, Recall the equation (ii) in [3, p. 313].
. ) There (n = dim (Y), n is odd now)
SGo+B+iA
’ 1 Zp(s) astk
JEL ds ¥ (@)
. T ZR (S) y n—1
c+iA H (S + .7) »
j=0 =Y (-1 Z Z 1x
IEHBHA (5 p=0 (TA€lp ze AP ™
Zrn (s
=0 c+kT—k—1 / R d
v ZR (S) | S‘ 4 s+k
ctid « Res._, Zg(s+p—X\T1) =
=0 (a:c+ T—h—t +E> ) (s+7)
g =0
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where AZ’T”\ is the set of poles

Zg(s+p—A71) a°th

Zs(s+p—ArT) k N
(s+7)
=0
and k£ > 2n.
Since
Zg (s)
(s)
n—1 /
Zg(s+p—AT)
=2 = Z Z§(5+p—)\7)’
p=0 (T, NEL, ’

it follows that we can write

Vi (2)

B " Z;%(s) oStk
o
z€Ap ' S ])

J=0
where A]f% is the set of poles

Z;% (8) stk
ZR (s)

(s +J)

<.
I

The main result in [3, p. 311] states that

mr ac)

n—1
=Y (-P > 1x

p=0 (m,N€elp
CY ()

-1
sPTAE (2.0 :—rZPp—1 =2/)]

n+p—1
+0 <x2p$ (log w)_1>

as x — 400, where sP™ is a singularity of the Sel-

berg zeta function Zg (s + p — A, 7).

Reasoning as above (see also, [16, p. 192, (12)]),

we may write

71 ()

= Z li (x°F)

-1
SRE <2p:_t2pp_1 ,2p}

+0 (pr% (log :L‘)_l)
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as ¢ — +o00, where sp is a singularity of the Ruelle

zeta function Zp, (s).
In short, the equation

Y. (2)
7 s+k
= Z Res;—, (5) =
ZR(s) k .
zeAf [T (s+3)
=0
yields that
i ()

= Z li (x°%)

—1
SRE (29 :—t;p—l ’QP}

n+p—1
+0 (pr#f;—l (log x)_l)

as xr — +oo.
In the present setting, n = d, p = %.
Thus, the equation

Yy ()
_ Z Res ;%(8) stk
S=z Z s k
et 1L (s +9)
=0
yields that
r (2)

= > li (z°F)

sr€(3(d—1),d—1]

+0 (:L'%(d_l) (log x)_1>

as x — +o00.
Now, the fact that

ZR (s)
1
d—1
= H (ZS<3+2 —p,ap>><
p=0
d—1 (=1*
><Zg<s—2+p,ap>) X

d—1

(o))
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implies that

Zg (s)
ZR (s)
-1 / d—1

_ Z (_1)102 (S+T p,Up)+
=0 Zs (s + 5t = p,0p)
. Z. (s —l iy )
Z (_1)1) S 21 b, 0p +
p=0 Zs (S—%-ﬁ-p,(fp)

Consequently,

r ()
d-1_1

Sy Y

p=0 s(p)e(3(d—1),d—1]

+0 (x%(dfl) (log x)71>

li (:rs(p))

as ¢ — +o0, where s (p) is a singularity of the Selberg
zeta function Zg (s — 5L + p, o).

This completes the proof. O

7 Conclusion

Note that the result given by Theorem 1 agrees
with the corresponding result in the compact, even-
dimensional case (see, [16, p. 192, (13)]).

In [2], the authors proved that (see, [25] for some-
what weaker error term)

71 ()

- ¥

sn(k)e(2(d—1),d—1]

+0 (m%(d_l) (log :U)_1>

(1)1 (a:S”(k)>

as © — 4oo, where (s —k)(d—1—Fk— s, (k))
is a small eigenvalue in [O, % (%)2} of A on
Top A (k) With s, (k) = % + 1A, (k) or s, (k) =
=L — i), (k)in (3 (d — 1),d — 1], Ay is the Lapla-
cian acting on the space of k-forms over Xr, 7, x, (k)
is the principal series representation, and Xr is a d-
dimensional real hyperbolic manifold with cusps.
Obviously, Theorem 1 is in line with this result.
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In particular, Randol [29] proved that (see, [20],
[21], [18] for a weaker form of the error term)

T (.%')

= Z li (a:s"(k)> +0 (wg (logw)_1>
]

snE( 1

=

as r — 400, where \,, = s,, (1 — s,,) is a small eigen-

value in [0, %] of the Laplacian A acting on L? (R),
and R is a compact Riemann surface of genus g > 2.

Thus, Theorem 1 is in line with this result as well.
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