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Abstract: We derive a prime geodesic theorem for compact, odd-dimensional, real hyperbolic spaces. The obtained
result corresponds to the best known result obtained in the compact, even-dimensional case, as well as to the best
known result obtained in the case of non-compact, real hyperbolic manifolds with cusps. The result derived in this
paper follows from the fact that the prime geodesic theorem gives a growth asymptotic for the number of closed
geodesics counted by their lengths, and the fact that free homotopy classes of closed paths on compact locally
symmetric Riemannian manifold with negative sectional curvature are in natural one-to-one correspondence with
the set of conjugacy classes of the corresponding discrete, co-compact, torsion-free group. The current article is
dedicated to quotients of the real hyperbolic space.
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1 Introduction
In [3], the authors improved the error term in DeGe-
orge’s prime geodesic theorem [7], for compact, lo-
cally symmetric spaces of real rank one.

In this paper we pay our particular attention to
compact, odd-dimensional, real hyperbolic spaces.

While the main result in [3] is achieved by ap-
plication of the method analogous to the method de-
veloped by Randol [29], the main result of this paper
will follow from our recent research on the logarith-
mic derivative of the corresponding zeta functions of
Selberg and Ruelle [17], and the techniques applied
by Park [25], Fried [10], and Hejhal [18], [19].

For the corresponding result in the compact, even-
dimensional case, we refer to [16].

Note that Gangolli [14] and DeGeorge [7] proved
the same result independently. Moreover, an anal-
ogous result was proved by Gangolli-Warner [15],
when locally symmetric space has a finite volume.

In [18] and [19], Hejhal extensively studied the
Selberg zeta function over a hyperbolic Riemann sur-
face. There, he derived a prime geodesic theorem with
error terms (see also, [20], [21] and [29]).

There have been many works, for instance the
work of Iwaniec [23] and Luo-Sarnak [24], to obtain
the optimal size of the error term for a specific arith-
metic discrete subgroup Γ ⊂ PSL (2,R).

We also refer to the work of Parry-Pollicott [26],

where they used the Ruelle zeta function for an axiom
A flow to derive a prime geodesic theorem.

In [25], Park proved Theorem 1.1 for the Ruelle
zeta function twisted by a special unitary representa-
tion χ of Γ. According to Park, this can be used for
prime geodesic theorem in a fixed homology class,
which would be a refinement of [1], [9], [28] for real
hyperbolic manifolds with cusps.

The structure of the paper is as follows. Sec-
tion 2 is devoted to harmonic analysis on compact
symmetric spaces. We introduce symmetric and lo-
cally symmetric spaces of rank 1, give the corre-
sponding restriction map, introduce the real hyper-
bolic space, and define Casimir and Dirac operators.
We adopt some necessary notation related to the ad-
missible lifts and the trace formula (the hyperbolic
contribution). Finally, we introduce the zeta functions
and the geodesic flow, and give the corresponding sin-
gularity pattern. In Section 3 we consider the Sel-
berg zeta functions and the corresponding differential
forms on d-dimensional real hyperbolic manifolds.
We provide an adopted singularity pattern expressed
in terms of the corresponding form Laplacians. Sec-
tion 4 is devoted to preliminary results. There, we
assemble those theorems we will need. In Section 5
we introduce various counting functions and give the
Weyl asymptotic law in the form sufficient to derive
desired results. In Section 6 we state and prove the
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main result of the paper. Finally, Section 7 is devoted
to concluding remarks.

2 Harmonic analysis on compact
symmetric spaces

We introduce the notation following [5].
Let Y be a compact locally symmetric Rieman-

nian manifold with negative sectional curvature.
Denote by X the universal covering of Y .
SinceX is a Riemannian symmetric space of rank

one, it is either a real, or a complex, or a quaternionic
hyperbolic space, or the hyperbolic Cayley plane.

As it is well known, we may write Y = Γ \
G / K, and X = G / K, where G is a connected
semi-simple Lie group of real rank one, K is a max-
imal compact subgroup of G, and Γ is a discrete, co-
compact torsion-free subgroup of G.

We requireG to be linear in order to have the pos-
sibility of complexification.

Let g = k ⊕ p be the Cartan decomposition of the
Lie algebra g of G, a a maximal abelian subspace of
p, andM the centralizer of a inK with Lie algebra m.

We normalize the Ad (G)-invariant inner product
(., .) on g to restrict to the metric on p.

Let Φ (g, a) be the root system determined by the
adjoint action of a on g.

Let W = W (g, a) be its Weyl group.
Fix a system of positive roots Φ+ (g, a) ⊂

Φ (g, a), and let n =
∑

α∈Φ+(g,a)

nα be the sum of

the root spaces corresponding to the elements of
Φ+ (g, a).

The Iwasawa decomposition g = k⊕ a⊕ n corre-
sponds to the Iwasawa decomposition G = KAN of
the group G.

Define ρ = 1
2

∑
α∈Φ+(g,a)

dim (nα)α, and the posi-

tive Weyl chamber a+ (as the half line in a on which
the positive roots take positive values).

Let A+ = exp (a+) ⊂ A.
Let i∗ : R (K) → R (M) be the restriction map

induced by the embedding i : M ↪→ K, where R (K)
and R (M) are the representation rings ever Z of K
and M , respectively.

Suppose that dim (Y ) = d ≥ 3.
It follows that X is the real hyperbolic space

HRd, where K = Spin (d), M = Spin (d− 1) or
K = SO (d), M = SO (d− 1).

Moreover, the fact that d is odd, yields that we
have to distinguish between two cases:

Case (a): σ ∈ M̂ is invariant under the action of
the Weyl group W .

Case (b): σ ∈ M̂ is not invariant under the action
of the Weyl group.

Here, σ ∈ M̂ is a representation of M .
First, we consider the case (a).
By Proposition 1.1 and Proposition 1.2 in [5,

pp. 20-23], there exists an element γ ∈ R (K) such
that i∗ (γ) = σ.

Note that γ is uniquely determined by this condi-
tion.

To γ, we join Z2-graded homogeneous vector
bundle V (γ) = V (γ)+ ⊕ V (γ)− as follows.

We represent γ as

γ =
⊕

aiγi,

where ai ∈ Z, γi ∈ K̂, and put

V ±γ =
⊕

sign(ai)=±1

|ai|⊕
m=1

Vγi ,

where Vγi is the representation space of γi.
Then, we define

V (γ)± = G×K V ±γ .

If (χ, Vχ) is a finite dimensional unitary represen-
tation of Γ, then we define

VY,χ (γ) = Γ\ (Vγ ⊗ V (γ)) .

We choose a Cartan subalgebra t of m, and a sys-
tem of positive roots Φ+ (mC, t).

Let

c (σ) = |ρ|2 + |ρm|2 − |µσ + ρm|2 ,

where the norms are induced by the complex bilinear
extension to gC of the inner product (., .), µσ is the
highest weight of σ, and ρm = 1

2

∑
α∈Φ+(mC,t)

α.

The inner product (., .) also fixes the Casimir el-
ement Ω of the complex universal enveloping algebra
U (g).

We define the operators

A (γ, σ)2 : C∞ (X,V (γ))→ C∞ (X,V (γ)) ,

AY,χ (γ, σ)2 : C∞ (Y, VY,χ (γ))→ C∞ (Y, VY,χ (γ))

by

A (γ, σ)2 = −Ω− c (σ) ,

AY,χ (γ, σ)2 = −Ω− c (σ) .

Second, we consider the case (b).

WSEAS TRANSACTIONS on MATHEMATICS Dzenan Gusic

E-ISSN: 2224-2880 212 Volume 18, 2019



By Proposition 1.1 in [5, p. 20], there is a unique
element γ

′ ∈ ˆSpin (d), and a splitting s ⊗ γ
′

= γ+

⊕ γ−, where s is the spin representation of Spin (d)
and γ± are representations ofK, such that for the non-
trivial element w ∈W

σ − wσ = sign (νk)
(
s+ − s−

)
i∗
(
γ
′
)
,

σ + wσ = i∗
(
γ+ − γ−

)
,

where νk is the last coordinate of the highest weight
of σ, and s± are the half-spin representations of
Spin (d− 1).

We put γ = γ+ − γ− ∈ R (K) and γs = γ+ +
γ− ∈ R (K).

Now, we define the bundles V (γ), VY,χ (γ),
V (γs), VY,χ (γs), and the operators A (γ, σ),
AY,χ (γ, σ), A (γs, σ), AY,χ (γs, σ) in the same way
as in the case (a).

Note that V (γs), VY,χ (γs) are Clifford bundles.
Hence, they carry Dirac operators D (σ), DY,χ (σ).

In order to make these Dirac operators unique, we
proceed in exactly the same way as in [5, pp. 39-30].

We obtain, D (σ)2 = A (γs, σ)2, and since the
Dirac operators are self-adjoint, we have A (γs, σ) =
|D (σ)| and AY,χ (γs, σ) = |DY,χ (σ)|.

Let EA (.) be the family of spectral projections of
a normal operator A. We define for s ∈ C

mχ (s, γ, σ) = TrEAY,χ(γ,σ) ({s}) ,

ms
χ (s, σ) = Tr

(
EDY,χ(σ) ({s})−

EDY,χ(σ) ({−s})
)
.

Since d is odd, these multiplicities do not depend
on the choice of the representation γ =

⊕
aiγi, ai ∈

Z, γi ∈ K̂ given above.
The root system Φ+ (g, a) is of the form Φ+ (g, a)

= {α} or Φ+ (g, a) =
{
α
2 , α

}
, where α is the long

root.
We set T1 = |α|, where α is the long root.
Since Γ is co-compact and torsion-free, there are

only two types of conjugacy classes, the class of the
identity e ∈ Γ and classes of hyperbolic elements.

For g ∈ Γ let nΓ (g) = # (Γg/〈g〉), where Γg is
the centralizer of g in Γ, and 〈g〉 is the group generated
by g.

By CΓ we denote the set of conjugacy classes of
Γ.

Let g ∈ G be hyperbolic.
It is known (see, e.g., [13], [14], [15]) that g is

conjugated to some element agmg ∈ A+M .
Thus, g = θgagmgθ

−1
g for some θg.

We define l (g) = l
(
θgagmgθ

−1
g

)
= |log (ag)|.

Note that for g ∈ Γ, the number l (g) is actually
the length of the closed geodesic on Y defined by g.

Suppose that (σ, Vσ) and (χ, Vχ) are some finite-
dimensional unitary representations of M and Γ, re-
spectively.

For s ∈ C, Re (s) > 2ρ, the Ruelle zeta function
ZR,χ (s, σ) is given by

ZR,χ (s, σ)

=
∏

16=[g]∈CΓ

det
(

1− (σ (mg)⊗ χ (g)) e−sl(g)
)
.

For s ∈ C, Re (s) > ρ, the Selberg zeta function
ZS,χ (s, σ) is given by

ZS,χ (s, σ) =
∏

16=[g]∈CΓ
primitive

+∞∏
k=0

1×

× det
(

1−
(
σ (mg)⊗ χ (g)⊗

Sk
(
Ad (mgag)n̄

) )
e−(s+ρ)l(g)

)
,

where Sk denotes the k-th symmetric power of an en-
domorphism, n̄ = θn, θ is the Cartan involution of g,
and [g] ∈ CΓ is called primitive if l (g) is the smallest
time such that ϕ (l (g) , y) = y, where

ϕ : R× (Γ\G/M)→ Γ\G/M,

ϕ (t,ΓgM) = Γge−tHM (H is the unit vector in a+)
is the geodesic flow determined by the metric of Y .

If [g] ∈ CΓ is primitive, then nΓ (g) = 1.
In the case (b) we also define

Sχ (s, σ) = ZS,χ (s, σ)ZS,χ (s, wσ)

and the super zeta function

Ss
χ (s, σ) =

ZS,χ (s, σ)

ZS,χ (s, wσ)
,

where w ∈W is the non-trivial element.
Let nC be the complexification of n.
For p ≥ 0, we consider ∧pnC as a representation

of MA.
For λ ∈ C, let Cλ denote one-dimensional repre-

sentation of A given by a→ aλ.
There are sets Ip =

{
(τ, λ) : τ ∈ M̂, λ ∈ R

}
such that ∧pnC decomposes with respect to MA as
∧pnC =

∑
(τ,λ)∈Ip

Vτ ⊗Cλ, where Vτ is the space of the

representation τ .
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The Ruelle zeta function has the representation
(see, e.g., [10], [11], [12])

ZR,χ (s, σ)

=
d−1∏
p=0

 ∏
(τ,λ)∈Ip

ZS,χ (s+ ρ− λ, τ ⊗ σ)

(−1)p

.

By [5, p. 113, Th. 3.15], the zeta functions
ZS,χ (s, σ), Sχ (s, σ) and Ss

χ (s, σ) have meromor-
phic continuations to all of C.

In particular, the singularities of ZS,χ (s, σ) (case
(a)) and of Sχ (s, σ) (case (b)) are at ± i s of order
mχ (s, γ, σ) if s 6= 0 is an eigenvalue of AY,χ (γ, σ),
at s = 0 of order 2mχ (0, γ, σ) if 0 is an eigenvalue of
AY,χ (γ, σ).

In the case (b) the singularities of Ss
χ (s, σ) are at

i s and have order ms
χ (s, σ) if s ∈ R is an eigenvalue

of DY,χ (σ).
Furthermore, in the case (b), the zeta

function ZS,χ (s, σ) has singularities at i s, ±s ∈
spec (AY,χ (γs, σ)) of order

1

2

(
mχ (|s| , γ, σ) +ms

χ (s, σ)
)

if s 6= 0 and mχ (0, γ, σ) if s = 0.

3 Real hyperbolic spaces
As noted in the previous section, in this paper we pay
attention to the real hyperbolic space X = HRd, d ≥
3, d odd.

Thus, K = Spin (d), M = Spin (d− 1) or K =
SO (d), M = SO (d− 1).

In particular, ρ = d−1
2 .

We shall assume that the metric on Y is normal-
ized to be of sectional curvature −1.

Consequently, T1 = 1.
For the sake of simplicity, we fix some σ ∈ M̂

and χ ∈ Γ̂.
Hence, we avoid to write σ and χ in the sequel

(unless necessary).
It follows that

ZR (s)

=

d−1∏
p=0

 ∏
(τ,λ)∈Ip

ZS

(
s+

d− 1

2
− λ, τ

)(−1)p

.

Moreover, the Poincare duality

Id−1−p = {(τ, d− 1− λ) : (τ, λ) ∈ Ip} ,

where p ∈
{

0, 1, ..., d−1
2 − 1

}
, yields that

ZR (s)

=

d−1
2
−1∏

p=0

( ∏
(τ,λ)∈Ip

ZS

(
s+

d− 1

2
− λ, τ

)
×

× ZS
(
s− d− 1

2
+ λ, τ

))(−1)p

×

×

 ∏
(τ,λ)∈I d−1

2

ZS

(
s+

d− 1

2
− λ, τ

)
(−1)

d−1
2

.

Finally, reasoning as in [6, pp. 40-45], we obtain
that

ZR (s)

=

d−1
2
−1∏

p=0

(
ZS

(
s+

d− 1

2
− p, σp

)
×

× ZS
(
s− d− 1

2
+ p, σp

))(−1)p

×

×
(
ZS

(
s, σ d−1

2

))(−1)
d−1

2

.

Thus, in this setting, we consider the Selberg
zeta function ZS (s, σp), p ∈

{
0, 1, ..., d−1

2

}
for d-

dimensional real hyperbolic manifold Y , where σp is
the p-th exterior power of the standard representation
of SO (d− 1).

Note that σp is irreducible unless p = d−1
2 .

If p = d−1
2 , then there exists a splitting σ d−1

2
=

σ+ ⊕ σ− into two irreducible components σ+ and σ−
((1, 1, ..., 1,±1) is the highest weight of σ±).

The singularities of ZS (s, σp) are expressed in
terms of the form Laplacian ∆p on Y .

Thus, the Selberg zeta function ZS (s, σp), p ∈{
0, 1, ..., d−1

2

}
, has a zero at

0 6= s = iλ ∈ iR ∪
(
−d− 1− 2p

2
,
d− 1− 2p

2

)
of order

dim
{

∆pω =(
λ2 +

(
d− 1− 2p

2

)2
)
ω, δω = 0

}
,

a zero at s = 0 of order

2 dim
{

∆pω =

(
d− 1− 2p

2

)2

ω, δω = 0
}
,
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if p 6= d−1
2 , a singularity at s = d−1−2p

2 of order
p∑

k=0

(−1)p−k bk, a singularity at s=−d−1−2p
2 of order

p∑
k=0

(−1)p−k bk.

If p = d−1
2 , the latter two singularities coincide,

and the orders add up.
Here δ denotes the co-differential, and bk is the

k-th Betti number of Y .

4 Preliminary results
The following results will be applied in the sequel.

Theorem A. [22, p. 18, Th. A.] Let λ1, λ2,... be a
real sequence which increases (in the wide sense) and
has the limit infinity, and let

C (x) =
∑
λn≤x

cn,

where the cn may be real or complex, and the notation
indicates a summation over the (finite) set of positive
integers n for which λn ≤ x. Then, if X ≥ λ1 and
φ (x) has a continuous derivative, we have∑

λn≤X
cnφ (λn)

=−
X∫

λ1

C (x)φ
′
(x) dx+ C (X)φ (X) .

If further, C (X)φ (X)→ 0 as X →∞, then

∞∑
1

cnφ (λn)

=−
∞∫

1

C (x)φ
′
(x) dx,

provided that either side is convergent.

Theorem B. [22, p. 31, Th. B.] If k is a positive
integer, c > 0, y > 0, then

1

2π i

c+i∞∫
c−i∞

ysds
k∏
j=0

(s+ j)

=

{
0, y ≤ 1,
1
k!

(
1− 1

y

)k
, y ≥ 1.

Theorem C. [3, p. 307, Corollary 3.] If f (s) =
ZR,χ (s, σ), then

f (s) =
Z1 (s)

Z2 (s)
,

where Z1 (s), Z1 (s) are entire functions of order at
most d over C.

Theorem D. [10, p. 509, Prop. 7] Suppose Z (s) is
the ratio of two nonzero entire functions of order at
most d. Then, there is aD> 0 such that for arbitrarily
large choices of r∫

r

∣∣∣∣∣Z
′
(s)

Z (s)

∣∣∣∣∣ |ds| ≤ Drd log r.

Theorem E. [17] Let ε > 0 and d− 1≥ η > 0. Sup-
pose that t � 0 is chosen so that i t is not a zero of
ZS (s, σp), p ∈

{
0, 1, ..., d−1

2

}
. Then,

(i)

Z
′
R (s)

ZR (s)

=O
(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

for s = σ1 + i t, d−1
2 ≤ σ1 < 1

4 t −
d−1

2 , where
ρS,0 = d−1

2 + i γS,0 is a zero of ZS
(
s− d−1

2 , σ0

)
on the line Re (s) = d−1

2 .

(ii)

Z
′
R (s)

ZR (s)
= O

(
1

η
td−1+ε

)
for s = σ1 + i t, d−1

2 + η ≤ σ1 < 1
4 t −

d−1
2 .

5 Counting functions
Let Γh resp. PΓh denote the set of the Γ-conjugacy
classes of hyperbolic resp. primitive hyperbolic ele-
ments in Γ.

It is well known that a prime geodesic over Y cor-
responds to the conjugacy class of a primitive hyper-
bolic element γ ∈ Γ.

We denote such prime geodesic by Cγ .
Let πΓ (x) be the number of prime geodesics Cγ

over Y , whose length l (γ) is not larger than log x.
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We may write

πΓ (x) = # {Cγ : N (γ) ≤ x} ,

where N (γ) = el(γ).
It is also known that each γ ∈ Γh can be repre-

sented in the form γ = γ
nΓ(γ)
0 , where γ0 ∈ PΓh is

some element.
We introduce the following functions:

Λ (γ) = Λ
(
γ
nΓ(γ)
0

)
= logN (γ0)

for γ ∈ Γh,

ψ0 (x) =
∑

γ∈Γh,N(γ)≤x

Λ (γ) ,

ψj (x) =

x∫
0

ψj−1 (t) dt,

j ∈ N.
LetNS,0 (y) be the number of zeros ρS,0 = d−1

2 +

i γS,0 of ZS
(
s− d−1

2 , σ0

)
on the interval d−1

2 + ix, 0
< x ≤ y.

By [8, p. 89, Th. 9.1.],

NS,0 (y) = C1y
d +O

(
yd−1 (log y)−1

)
for some explicitly known constant C1.

Note that in [17], the estimate

NS,0 (y) = C1y
d +O

(
yd−1

)
was sufficient to derive the desired results (see also,
[4] for the even-dimensional case).

In this paper, we shall apply the estimate

NS,0 (y) = O
(
yd
)
.

6 Prime geodesic theorem
Theorem 1. (Prime Geodesic Theorem) Let X be the
real hyperbolic space HRd, d ≥ 3, d odd. Then,

πΓ (x)

=

d−1
2
−1∑

p=0

(−1)p
∑

s(p)∈( 3
4

(d−1),d−1]

li
(
xs(p)

)
O
(
x

3
4

(d−1) (log x)−1
)

as x→+∞, where s (p) is a singularity of the Selberg
zeta function ZS

(
s− d−1

2 + p, σp
)
.

Proof. Suppose that k ≥ 2d is an integer.
Furthermore, suppose that x > 1 and c > d− 1.
By [5, p. 97, (3.4)],

logZR (s) = −
∑
γ∈Γh

e−sl(γ)

nΓ (γ)

for Re (s) > d − 1.
Therefore,

Z
′
R (s)

ZR (s)
=
∑
γ∈Γh

e−sl(γ)l (γ)

nΓ (γ)

=
∑
γ∈Γh

l (γ)

nΓ (γ)N (γ)s

for Re (s) > d − 1.
Since γ ∈ Γh, it follows that γ = γ

nΓ(γ)
0 for some

γ0 ∈ PΓh.
As noted earlier, we may write γ0 =

θγ0aγ0mγ0θ
−1
γ0

for some θγ0 , where aγ0mγ0 ∈ A+M .
Now,

γ =γ
nΓ(γ)
0 =

(
θγ0aγ0mγ0θ

−1
γ0

)nΓ(γ)

=θγ0aγ0mγ0aγ0mγ0 ...aγ0mγ0θ
−1
γ0

=θγ0a
nΓ(γ)
γ0

mnΓ(γ)
γ0

θ−1
γ0
.

Hence,

l (γ) =l
(
θγ0a

nΓ(γ)
γ0

mnΓ(γ)
γ0

θ−1
γ0

)
=
∣∣∣log

(
anΓ(γ)
γ0

)∣∣∣
=nΓ (γ) |log (aγ0)| = nΓ (γ) l (γ0)

=nΓ (γ) logN (γ0) = nΓ (γ) Λ (γ) .

Consequently,

Z
′
R (s)

ZR (s)
=
∑
γ∈Γh

Λ (γ)

N (γ)s

for Re (s) > d − 1.
Hence, by Theorem A and Theorem B, we obtain

that (see, e.g., [3, pp. 311-312])

ψk (x) =
1

2π i

c+i∞∫
c−i∞

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds.

Let A� 0 be a number.
We consider the interval i t, A − 1 < t ≤ A + 1.
It is not hard to apply the Dirichlet

principle to conclude that there exists a point i Ā, Ā
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∈ (A− 1, A+ 1], such that (see, e.g., [16], [3], [30],
[27]) ∣∣i Ā− α∣∣ > C

Ād
,

where C > 0 is fixed, and α is a zero of ZS (s, σp), p
∈
{

0, 1, ..., d−1
2

}
.

Put

T =

√
Ā2 +

(
d− 1

2

)2

.

Define

C (T )

=

{
s ∈ C : |s| ≤ T,Re (s) ≤ d− 1

2

}
∪
{
s ∈ C :

d− 1

2
≤ Re (s) ≤ c,

− Ā ≤ Im (s) ≤ Ā
}
.

Since
∣∣i Ā− α∣∣ > C

Ād
for all α’s and all

ZS (s, σp)’s, it immediately follows that no pole of
Z
′
R(s)

ZR(s) occurs on the boundary of the square part of

C (T ) (note that ZS (s, σp), p ∈
{

0, 1, ..., d−1
2

}
has

no singularities for Re (s) > d−1
2 ).

Without loss of generality, we may also assume
that no pole of

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

occurs on the boundary of the circular part of C (T ).
Now, we apply the Cauchy residue theorem to the

function Z
′
R(s)

ZR(s)
xs+k

k∏
j=0

(s+j)

along the contour C (T ).

We obtain,∫
C1(T )

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=2π i
∑

z∈C(T )

Ress=z

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

 ,

where C1 (T ) denotes the boundary of C (T ) taken
with the anticlockwise orientation, and the sum along

C (T ) is taken over singularities of Z
′
R(s)

ZR(s)
xs+k

k∏
j=0

(s+j)

in-

side C (T ).
Suppose that 0 < β < c − d−1

2 .
Denote by C1 (T ) the boundary of the circular

part of C (T ), taken with the anticlockwise orienta-
tion.

We have,

c+i Ā∫
c−i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+

d−1
2

+β+i Ā∫
c+i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+

d−1
2

+i Ā∫
d−1

2
+β+i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+

∫
C1(T )

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+

d−1
2

+β−i Ā∫
d−1

2
−i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+

c−i Ā∫
d−1

2
+β−i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+

=2π i
∑

z∈C(T )

Ress=z

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

 .

Moreover,

ψk (x)

=
1

2π i

c+i Ā∫
c−i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+

1

2π i

c+i∞∫
c+i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+
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1

2π i

c−i Ā∫
c−i∞

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds.

Since

Z
′
R (s)

ZR (s)
=
∑
γ∈Γh

Λ (γ)

N (γ)s

for Re (s) > d − 1, we deduce

1

2π i

c+i∞∫
c+i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=O

xc+k c+i∞∫
c+i Ā

|ds|
|s|k+1


=O

(
xc+kĀ−k

)
.

Similarly,

1

2π i

c−i Ā∫
c−i∞

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=O
(
xc+kĀ−k

)
.

Therefore,

ψk (x)

=
1

2π i

c+i Ā∫
c−i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds+

O
(
xc+kĀ−k

)
,

i.e.,

c+i Ā∫
c−i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=2π iψk (x)−O
(
xc+kĀ−k

)
.

Furthermore, we estimate the
integrals along

[
c+ i Ā, d−1

2 + β + i Ā
]
,[

d−1
2 + β + i Ā, d−1

2 + i Ā
]
, C1 (T ),[

d−1
2 − i Ā, d−1

2 + β − i Ā
]

and[
d−1

2 + β − i Ā, c− i Ā
]
.

In order to estimate the integral over C1 (T ), we
apply Theorem C and Theorem D.

We obtain,∫
C1(T )

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=O

x d−1
2

+kT−k−1

∫
C1(T )

∣∣∣∣∣Z
′
R (s)

ZR (s)

∣∣∣∣∣ |ds|


=O

x d−1
2

+kT−k−1

∫
|s|=T

∣∣∣∣∣Z
′
R (s)

ZR (s)

∣∣∣∣∣ |ds|


=O
(
x
d−1

2
+kT−k−1+d log T

)
.

In order to estimate the remaining integrals, we
apply Theorem E and the fact that

∣∣i Ā− α∣∣ > C
Ād

for
all α’s.

Fix some ε > 0.
Obviously,

d−1
2

+i Ā∫
d−1

2
+β+i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=O

x d−1
2

+β+kT−k−1

d−1
2

+i Ā∫
d−1

2
+β+i Ā

∣∣∣∣∣Z
′
R (s)

ZR (s)

∣∣∣∣∣ |ds|
 .

By (i) of Theorem E,

Z
′
R (s)

ZR (s)

=O
(
Ād−1+ε

)
+

∑
|Ā−γS,0|≤1

1

s− ρS,0

for s = σ1 + i Ā, d−1
2 ≤ σ

1 < 1
4Ā −

d−1
2 .

In particular,

Z
′
R (s)

ZR (s)

=O
(
Ād−1+ε

)
+

∑
|Ā−γS,0|≤1

1

s− ρS,0

for s = σ1 + i Ā, d−1
2 ≤ σ

1 ≤ d−1
2 + β.
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Therefore,

Z
′
R (s)

ZR (s)

=O
(
Ād−1+ε

)
+O

Ād ∑
|Ā−γS,0|≤1

1


=O

(
Ād−1+ε

)
+O

(
Ā2d
)

=O
(
Ā2d
)

= O
(
T 2d
)

for s = σ1 + i Ā, d−1
2 ≤ σ

1 ≤ d−1
2 + β.

Consequently,

d−1
2

+i Ā∫
d−1

2
+β+i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=O
(
x
d−1

2
+β+kT−k−1+2d

)
.

Similarly,

d−1
2

+β−i Ā∫
d−1

2
−i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=O
(
x
d−1

2
+β+kT−k−1+2d

)
.

Finally, by (ii) of Theorem E,

Z
′
R (s)

ZR (s)
= O

(
1

β
Ād−1+ε

)
for s = σ1 + i Ā, d−1

2 + β ≤ σ1 < 1
4Ā −

d−1
2 .

In particular,

Z
′
R (s)

ZR (s)
= O

(
1

β
Ād−1+ε

)
for s = σ1 + i Ā, d−1

2 + β ≤ σ1 ≤ c.
We obtain,

d−1
2

+β+i Ā∫
c+i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=O

xc+kT−k−1

d−1
2

+β+i Ā∫
c+i Ā

∣∣∣∣∣Z
′
R (s)

ZR (s)

∣∣∣∣∣ |ds|


=O

(
1

β
xc+kT−k−2+d+ε

)
.

Similarly,

c−i Ā∫
d−1

2
+β−i Ā

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

ds

=O

(
1

β
xc+kT−k−2+d+ε

)
.

Combining the estimates derived above, we end
up with

2π iψk (x)−O
(
xc+kĀ−k

)
+

O

(
1

β
xc+kT−k−2+d+ε

)
+

O
(
x
d−1

2
+β+kT−k−1+2d

)
+

O
(
x
d−1

2
+kT−k−1+d log T

)

=2π i
∑

z∈C(T )

Ress=z

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

 .

Letting T → +∞ (then Ā → +∞ as well), and
taking into account that k ≥ 2d, we conclude that

ψk (x)

=
∑
z∈PkR

Ress=z

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

 ,

where P kR denotes the set of singularities (poles) of
Z
′
R(s)

ZR(s)
xs+k

k∏
j=0

(s+j)

.

Recall the equation (ii) in [3, p. 313].
There (n = dim (Y ), n is odd now)

ψk (x)

=

n−1∑
p=0

(−1)p
∑

(τ,λ)∈Ip

∑
z∈Ap,τ,λk

1×

× Ress=z

Z
′
S (s+ ρ− λ, τ)

ZS (s+ ρ− λ, τ)

xs+k

k∏
j=0

(s+ j)

 ,
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where Ap,τ,λk is the set of poles

Z
′
S (s+ ρ− λ, τ)

ZS (s+ ρ− λ, τ)

xs+k

k∏
j=0

(s+ j)

,

and k ≥ 2n.
Since

Z
′
R (s)

ZR (s)

=
n−1∑
p=0

(−1)p
∑

(τ,λ)∈Ip

Z
′
S (s+ ρ− λ, τ)

ZS (s+ ρ− λ, τ)
,

it follows that we can write

ψk (x)

=
∑
z∈AkR

Ress=z

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

 ,

where AkR is the set of poles

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)

.

The main result in [3, p. 311] states that

πΓ (x)

=

n−1∑
p=0

(−1)p
∑

(τ,λ)∈Ip

1×

×
∑

sp,τ,λ∈
(

2ρ n+ρ−1
n+2ρ−1

,2ρ
] li
(
xs

p,τ,λ
)

+O
(
x

2ρ n+ρ−1
n+2ρ−1 (log x)−1

)
as x → +∞, where sp,τ,λ is a singularity of the Sel-
berg zeta function ZS (s+ ρ− λ, τ).

Reasoning as above (see also, [16, p. 192, (12)]),
we may write

πΓ (x)

=
∑

sR∈
(

2ρ n+ρ−1
n+2ρ−1

,2ρ
] li (xsR)

+O
(
x

2ρ n+ρ−1
n+2ρ−1 (log x)−1

)

as x → +∞, where sR is a singularity of the Ruelle
zeta function ZR (s).

In short, the equation

ψk (x)

=
∑
z∈AkR

Ress=z

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)


yields that

πΓ (x)

=
∑

sR∈
(

2ρ n+ρ−1
n+2ρ−1

,2ρ
] li (xsR)

+O
(
x

2ρ n+ρ−1
n+2ρ−1 (log x)−1

)
as x→ +∞.

In the present setting, n = d, ρ = d−1
2 .

Thus, the equation

ψk (x)

=
∑
z∈PkR

Ress=z

Z
′
R (s)

ZR (s)

xs+k

k∏
j=0

(s+ j)


yields that

πΓ (x)

=
∑

sR∈( 3
4

(d−1),d−1]

li (xsR)

+O
(
x

3
4

(d−1) (log x)−1
)

as x→ +∞.
Now, the fact that

ZR (s)

=

d−1
2
−1∏

p=0

(
ZS

(
s+

d− 1

2
− p, σp

)
×

× ZS
(
s− d− 1

2
+ p, σp

))(−1)p

×

×
(
ZS

(
s, σ d−1

2

))(−1)
d−1

2

,
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implies that

Z
′
R (s)

ZR (s)

=

d−1
2
−1∑

p=0

(−1)p
Z
′
S

(
s+ d−1

2 − p, σp
)

ZS
(
s+ d−1

2 − p, σp
)+

d−1
2
−1∑

p=0

(−1)p
Z
′
S

(
s− d−1

2 + p, σp
)

ZS
(
s− d−1

2 + p, σp
)+

(−1)
d−1

2

Z
′
S

(
s, σ d−1

2

)
ZS

(
s, σ d−1

2

) .
Consequently,

πΓ (x)

=

d−1
2
−1∑

p=0

(−1)p
∑

s(p)∈( 3
4

(d−1),d−1]

li
(
xs(p)

)
+O

(
x

3
4

(d−1) (log x)−1
)

as x→+∞, where s (p) is a singularity of the Selberg
zeta function ZS

(
s− d−1

2 + p, σp
)
.

This completes the proof.

7 Conclusion
Note that the result given by Theorem 1 agrees
with the corresponding result in the compact, even-
dimensional case (see, [16, p. 192, (13)]).

In [2], the authors proved that (see, [25] for some-
what weaker error term)

πΓ (x)

=
∑

sn(k)∈( 3
4

(d−1),d−1]

(−1)k li
(
xsn(k)

)
+O

(
x

3
4

(d−1) (log x)−1
)

as x → +∞, where (sk − k) (d− 1− k − sn (k))

is a small eigenvalue in
[
0, 3

4

(
d−1

2

)2]
of ∆k on

πσk,λn(k) with sn (k) = d−1
2 + iλn (k) or sn (k) =

d−1
2 − iλn (k) in

(
3
4 (d− 1) , d− 1

]
, ∆k is the Lapla-

cian acting on the space of k-forms overXΓ, πσk,λn(k)

is the principal series representation, and XΓ is a d-
dimensional real hyperbolic manifold with cusps.

Obviously, Theorem 1 is in line with this result.

In particular, Randol [29] proved that (see, [20],
[21], [18] for a weaker form of the error term)

πΓ (x)

=
∑

sn∈( 3
4
,1]

li
(
xsn(k)

)
+O

(
x

3
4 (log x)−1

)

as x→+∞, where λn = sn (1− sn) is a small eigen-
value in

[
0, 3

16

]
of the Laplacian ∆0 acting on L2 (R),

and R is a compact Riemann surface of genus g ≥ 2.
Thus, Theorem 1 is in line with this result as well.
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in the prime geodesic theorem, Bull. Korean
Math. Soc. 49, 2012, pp. 367–372.
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